Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388830

RESUMO

The RAS-MAPK pathway regulates cell proliferation, differentiation and survival, and its dysregulation is associated with cancer development. The pathway minimally comprises the small GTPase RAS and the kinases RAF, MEK and ERK. Activation of RAF by RAS is notoriously intricate and remains only partially understood. There are three RAF isoforms in mammals (ARAF, BRAF and CRAF) and two related pseudokinases (KSR1 and KSR2). RAS-mediated activation of RAF depends on an allosteric mechanism driven by the dimerization of its kinase domain. Recent work on human RAFs showed that MEK binding to KSR1 promotes KSR1-BRAF heterodimerization, which leads to the phosphorylation of free MEK molecules by BRAF. Similar findings were made with the single Drosophila RAF homolog. Here we show that the fly scaffold proteins CNK and HYP stabilize the KSR-MEK interaction, which in turn enhances RAF-KSR heterodimerization and RAF activation. The cryogenic electron microscopy structure of the minimal KSR-MEK-CNK-HYP complex reveals a ring-like arrangement of the CNK-HYP complex allowing CNK to simultaneously engage KSR and MEK, thus stabilizing the binary interaction. Together, these results illuminate how CNK contributes to RAF activation by stimulating the allosteric function of KSR and highlight the diversity of mechanisms impacting RAF dimerization as well as the regulatory potential of the KSR-MEK interaction.

2.
Nat Commun ; 14(1): 3560, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322019

RESUMO

Cell motility is a critical feature of invasive tumour cells that is governed by complex signal transduction events. Particularly, the underlying mechanisms that bridge extracellular stimuli to the molecular machinery driving motility remain partially understood. Here, we show that the scaffold protein CNK2 promotes cancer cell migration by coupling the pro-metastatic receptor tyrosine kinase AXL to downstream activation of ARF6 GTPase. Mechanistically, AXL signalling induces PI3K-dependent recruitment of CNK2 to the plasma membrane. In turn, CNK2 stimulates ARF6 by associating with cytohesin ARF GEFs and with a novel adaptor protein called SAMD12. ARF6-GTP then controls motile forces by coordinating the respective activation and inhibition of RAC1 and RHOA GTPases. Significantly, genetic ablation of CNK2 or SAMD12 reduces metastasis in a mouse xenograft model. Together, this work identifies CNK2 and its partner SAMD12 as key components of a novel pro-motility pathway in cancer cells, which could be targeted in metastasis.


Assuntos
Fatores de Ribosilação do ADP , Neoplasias , Humanos , Camundongos , Animais , Fatores de Ribosilação do ADP/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator 6 de Ribosilação do ADP , Transdução de Sinais/fisiologia , Movimento Celular/fisiologia , Neoplasias/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
3.
Nucleic Acids Res ; 45(9): 5564-5576, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28334776

RESUMO

p65 is a member of the NF-κB family of transcriptional regulatory proteins that functions as the activating component of the p65-p50 heterodimer. Through its acidic transactivation domain (TAD), p65 has the capacity to form interactions with several different transcriptional regulatory proteins, including TFIIB, TFIIH, CREB-binding protein (CBP)/p300 and TAFII31. Like other acidic TADs, the p65 TAD contains two subdomains (p65TA1 and p65TA2) that interact with different regulatory factors depending on the target gene. Despite its role in controlling numerous NF-κB target genes, there are no high-resolution structures of p65TA1 bound to a target transcriptional regulatory factor. In this work, we characterize the interaction of p65TA1 with two factors, the Tfb1/p62 subunit of TFIIH and the KIX domain of CBP. In these complexes, p65TA1 transitions into a helical conformation that includes its characteristic ΦXXΦΦ motif (Φ = hydrophobic amino acid). Structural and functional studies demonstrate that the two binding interfaces are primarily stabilized by three hydrophobic amino acids within the ΦXXΦΦ motif and these residues are also crucial to its ability to activate transcription. Taken together, the results provide an atomic level description of how p65TA1 is able to bind different transcriptional regulatory factors needed to activate NF-κB target genes.


Assuntos
Fator de Transcrição RelA/química , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Motivos de Aminoácidos , Sítios de Ligação , Calorimetria , Espectroscopia de Ressonância Magnética , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Especificidade por Substrato , Transcrição Gênica
4.
PLoS Pathog ; 10(3): e1004042, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24675874

RESUMO

Infection with the Epstein-Barr virus (EBV) can lead to a number of human diseases including Hodgkin's and Burkitt's lymphomas. The development of these EBV-linked diseases is associated with the presence of nine viral latent proteins, including the nuclear antigen 2 (EBNA2). The EBNA2 protein plays a crucial role in EBV infection through its ability to activate transcription of both host and viral genes. As part of this function, EBNA2 associates with several host transcriptional regulatory proteins, including the Tfb1/p62 (yeast/human) subunit of the general transcription factor IIH (TFIIH) and the histone acetyltransferase CBP(CREB-binding protein)/p300, through interactions with its C-terminal transactivation domain (TAD). In this manuscript, we examine the interaction of the acidic TAD of EBNA2 (residues 431-487) with the Tfb1/p62 subunit of TFIIH and CBP/p300 using nuclear magnetic resonance (NMR) spectroscopy, isothermal titration calorimeter (ITC) and transactivation studies in yeast. NMR studies show that the TAD of EBNA2 binds to the pleckstrin homology (PH) domain of Tfb1 (Tfb1PH) and that residues 448-471 (EBNA2448₋471) are necessary and sufficient for this interaction. NMR structural characterization of a Tfb1PH-EBNA2448₋471 complex demonstrates that the intrinsically disordered TAD of EBNA2 forms a 9-residue α-helix in complex with Tfb1PH. Within this helix, three hydrophobic amino acids (Trp458, Ile461 and Phe462) make a series of important interactions with Tfb1PH and their importance is validated in ITC and transactivation studies using mutants of EBNA2. In addition, NMR studies indicate that the same region of EBNA2 is also required for binding to the KIX domain of CBP/p300. This study provides an atomic level description of interactions involving the TAD of EBNA2 with target host proteins. In addition, comparison of the Tfb1PH-EBNA2448₋471 complex with structures of the TAD of p53 and VP16 bound to Tfb1PH highlights the versatility of intrinsically disordered acidic TADs in recognizing common target host proteins.


Assuntos
Infecções por Vírus Epstein-Barr/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Fator de Transcrição TFIIH/metabolismo , Proteínas Virais/metabolismo , Animais , Antígenos Nucleares do Vírus Epstein-Barr/química , Humanos , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Fator de Transcrição TFIIH/química , Ativação Transcricional , Proteínas Virais/química
5.
Structure ; 21(11): 2014-24, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24139988

RESUMO

Like other acidic transactivation domains (TAD), the minimal TAD from the erythroid-specific transcription factor EKLF (EKLFTAD) has been shown to contribute both to its transcriptional activity as well as to its ubiquitin(UBI)-mediated degradation. In this article, we examine the activation-degradation role of the acidic TAD of EKLF and demonstrate that the first 40 residues (EKLFTAD1) within this region form a noncovalent interaction with UBI. Nuclear magnetic resonance (NMR) structural studies of an EKLFTAD1-UBI complex show that EKLFTAD1 adopts a 14-residue α helix that forms the recognition interface with UBI in a similar manner as the UBI-interacting helix of Rabex5. We also identify a similar interaction between UBI and the activation-degradation region of SREBP1a, but not with the activation-degradation regions of p53, GAL4, and VP16. These results suggest that select activation-degradation regions like the ones found in EKLF and SREBP1a function in part through their ability to form noncovalent interactions with UBI.


Assuntos
Fatores de Transcrição Kruppel-Like/química , Ubiquitina/química , Substituição de Aminoácidos , Sítios de Ligação , Linhagem Celular , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fatores de Transcrição Kruppel-Like/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Ubiquitina/genética
6.
Nucleic Acids Res ; 41(4): 2736-45, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23295669

RESUMO

XPC/Rad4 (human/yeast) recruits transcription faction IIH (TFIIH) to the nucleotide excision repair (NER) complex through interactions with its p62/Tfb1 and XPB/Ssl2 subunits. TFIIH then recruits XPG/Rad2 through interactions with similar subunits and the two repair factors appear to be mutually exclusive within the NER complex. Here, we show that Rad4 binds the PH domain of the Tfb1 (Tfb1PH) with high affinity. Structural characterization of a Rad4-Tfb1PH complex demonstrates that the Rad4-binding interface is formed using a motif similar to one used by Rad2 to bind Tfb1PH. In vivo studies in yeast demonstrate that the N-terminal Tfb1-binding motif and C-terminal TFIIH-binding motif of Rad4 are both crucial for survival following exposure to UV irradiation. Together, these results support the hypothesis that XPG/Rad2 displaces XPC/Rad4 from the repair complex in part through interactions with the Tfb1/p62 subunit of TFIIH. The Rad4-Tfb1PH structure also provides detailed information regarding, not only the interplay of TFIIH recruitment to the NER, but also links the role of TFIIH in NER and transcription.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/química , Endodesoxirribonucleases/química , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição TFII/química , Sequência de Aminoácidos , Sítios de Ligação , Ligação Competitiva , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Viabilidade Microbiana , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Domínios e Motivos de Interação entre Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição TFII/metabolismo , Raios Ultravioleta
7.
Nucleic Acids Res ; 40(12): 5739-50, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22373916

RESUMO

The general transcription factor IIH (TFIIH) plays crucial roles in transcription as part of the pre-initiation complex (PIC) and in DNA repair as part of the nucleotide excision repair (NER) machinery. During NER, TFIIH recruits the 3'-endonuclease Rad2 to damaged DNA. In this manuscript, we functionally and structurally characterized the interaction between the Tfb1 subunit of TFIIH and Rad2. We show that deletion of either the PH domain of Tfb1 (Tfb1PH) or several segments of the Rad2 spacer region yield yeast with enhanced sensitivity to UV irradiation. Isothermal titration calorimetry studies demonstrate that two acidic segments of the Rad2 spacer bind to Tfb1PH with nanomolar affinity. Structure determination of a Rad2-Tfb1PH complex indicates that Rad2 binds to TFIIH using a similar motif as TFIIEα uses to bind TFIIH in the PIC. Together, these results provide a mechanistic bridge between the role of TFIIH in transcription and DNA repair.


Assuntos
Proteínas de Ligação a DNA/química , Endodesoxirribonucleases/química , Proteínas de Saccharomyces cerevisiae/química , Fatores de Transcrição TFII/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Tolerância a Radiação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFII/metabolismo , Proteína Supressora de Tumor p53/química , Raios Ultravioleta
8.
J Am Chem Soc ; 134(3): 1715-23, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22191432

RESUMO

Malfunctions in transcriptional regulation are associated with a number of critical human diseases. As a result, there is considerable interest in designing artificial transcription activators (ATAs) that specifically control genes linked to human diseases. Like native transcriptional activator proteins, an ATA must minimally contain a DNA-binding domain (DBD) and a transactivation domain (TAD) and, although there are several reliable methods for designing artificial DBDs, designing artificial TADs has proven difficult. In this manuscript, we present a structure-based strategy for designing short peptides containing natural amino acids that function as artificial TADs. Using a segment of the TAD of p53 as the scaffolding, modifications are introduced to increase the helical propensity of the peptides. The most active artificial TAD, termed E-Cap-(LL), is a 13-mer peptide that contains four key residues from p53, an N-capping motif and a dileucine hydrophobic bridge. In vitro analysis demonstrates that E-Cap-(LL) interacts with several known p53 target proteins, while in vivo studies in a yeast model system show that it is a 20-fold more potent transcriptional activator than the native p53-13 peptide. These results demonstrate that structure-based design represents a promising approach for developing artificial TADs that can be combined with artificial DBDs to create potent and specific ATAs.


Assuntos
Peptídeos/química , Peptídeos/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Regulação Fúngica da Expressão Gênica , Humanos , Leucina/química , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/síntese química , Estrutura Terciária de Proteína , Proteína Supressora de Tumor p53/síntese química , Leveduras/genética
9.
Proc Natl Acad Sci U S A ; 108(26): 10484-9, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21670263

RESUMO

Erythroid Krüppel-like factor (EKLF) plays an important role in erythroid development by stimulating ß-globin gene expression. We have examined the details by which the minimal transactivation domain (TAD) of EKLF (EKLFTAD) interacts with several transcriptional regulatory factors. We report that EKLFTAD displays homology to the p53TAD and, like the p53TAD, can be divided into two functional subdomains (EKLFTAD1 and EKLFTAD2). Based on sequence analysis, we found that EKLFTAD2 is conserved in KLF2, KLF4, KLF5, and KLF15. In addition, we demonstrate that EKLFTAD2 binds the amino-terminal PH domain of the Tfb1/p62 subunit of TFIIH (Tfb1PH/p62PH) and four domains of CREB-binding protein/p300. The solution structure of the EKLFTAD2/Tfb1PH complex indicates that EKLFTAD2 binds Tfb1PH in an extended conformation, which is in contrast to the α-helical conformation seen for p53TAD2 in complex with Tfb1PH. These studies provide detailed mechanistic information into EKLFTAD functions as well as insights into potential interactions of the TADs of other KLF proteins. In addition, they suggest that not only have acidic TADs evolved so that they bind using different conformations on a common target, but that transitioning from a disordered to a more ordered state is not a requirement for their ability to bind multiple partners.


Assuntos
Fatores de Transcrição Kruppel-Like/química , Sequência de Aminoácidos , Sítios de Ligação , Calorimetria , Clonagem Molecular , Humanos , Células K562 , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo
10.
Ann N Y Acad Sci ; 1197: 19-27, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20536828

RESUMO

We present results showing that glucose signaling has proaging effects in the yeast Schizosaccharomyces pombe. Deletion of the receptor that senses extracellular glucose (Git3) increases the life span of S. pombe, while constitutive activation of the Galpha subunit acting downstream of this receptor (Gpa2) shortens its life span. The latter mutant is also impaired for growth under respiration conditions. We have used this phenotype in a selection strategy to identify genes that when overexpressed can rescue the respiratory defect of constitutively active Galpha subunit mutants. Here, we report an extended version of the work we presented at the IABG meeting and the results of this screen. This strategy allowed us to isolate four genes: psp1(+)/moc1(+), cka1(+), adh1(+), and rpb10(+). Interestingly, the overexpression of these genes was also capable of increasing the chronological life span of wild-type yeast cells.


Assuntos
Genes , Longevidade/genética , Schizosaccharomyces/genética , Schizosaccharomyces/fisiologia , Glucose/genética , Fenótipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/citologia , Transdução de Sinais/genética
11.
PLoS One ; 4(9): e6939, 2009 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19759825

RESUMO

The molecular chaperone Hsp104 is a crucial factor in the acquisition of thermotolerance in yeast. Under stress conditions, the disaggregase activity of Hsp104 facilitates the reactivation of misfolded proteins. Hsp104 is also involved in the propagation of fungal prions. For instance, the well-characterized [PSI(+)] prion of Saccharomyces cerevisiae does not propagate in Deltahsp104 cells or in cells overexpressing Hsp104. In this study, we characterized the functional homolog of Hsp104 from Schizosaccharomyces pombe (Sp_Hsp104). As its S. cerevisiae counterpart, Sp_hsp104(+) is heat-inducible and required for thermotolerance in S. pombe. Sp_Hsp104 displays low disaggregase activity and cannot propagate the [PSI(+)] prion in S. cerevisiae. When overexpressed in S. cerevisiae, Sp_Hsp104 confers thermotolerance to Deltahsp104 cells and reactivates heat-aggregated proteins. However, overexpression of Sp_Hsp104 does not propagate nor eliminate [PSI(+)]. Strikingly, [PSI(+)] was cured by overexpression of a chimeric chaperone bearing the C-terminal domain (CTD) of the S. cerevisiae Hsp104 protein. Our study demonstrates that the ability to untangle aggregated proteins is conserved between the S. pombe and S. cerevisiae Hsp104 homologs, and points to a role of the CTD in the propagation of the S. cerevisiae [PSI(+)] prion.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Choque Térmico/fisiologia , Fatores de Terminação de Peptídeos/metabolismo , Príons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Adenosina Trifosfatases/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Temperatura Alta , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oligonucleotídeos/química , Estrutura Terciária de Proteína , Proteínas/química , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato
12.
Mol Biol Cell ; 19(10): 4404-20, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18701708

RESUMO

Stress conditions affecting the functions of the endoplasmic reticulum (ER) cause the accumulation of unfolded proteins. ER stress is counteracted by the unfolded-protein response (UPR). However, under prolonged stress the UPR initiates a proapoptotic response. Mounting evidence indicate that the ER chaperone calnexin is involved in apoptosis caused by ER stress. Here, we report that overexpression of calnexin in Schizosaccharomyces pombe induces cell death with apoptosis markers. Cell death was partially dependent on the Ire1p ER-stress transducer. Apoptotic death caused by calnexin overexpression required its transmembrane domain (TM), and involved sequences on either side of the ER membrane. Apoptotic death caused by tunicamycin was dramatically reduced in a strain expressing endogenous levels of calnexin lacking its TM and cytosolic tail. This demonstrates the involvement of calnexin in apoptosis triggered by ER stress. A genetic screen identified the S. pombe homologue of the human antiapoptotic protein HMGB1 as a suppressor of apoptotic death due to calnexin overexpression. Remarkably, overexpression of human calnexin in S. pombe also provoked apoptotic death. Our results argue for the conservation of the role of calnexin in apoptosis triggered by ER stress, and validate S. pombe as a model to elucidate the mechanisms of calnexin-mediated cell death.


Assuntos
Apoptose , Calnexina/fisiologia , Retículo Endoplasmático/metabolismo , Regulação Fúngica da Expressão Gênica , Morte Celular , Sobrevivência Celular , Citosol/metabolismo , Proteína HMGB1/metabolismo , Humanos , Modelos Biológicos , Mutação , Plasmídeos , Desnaturação Proteica , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...